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We propose a resonant one-dimensional quasicrystal, namely, a multiple quantum well �MQW� structure
satisfying the Fibonacci-chain rule with the golden ratio between the long and short interwell distances. The
resonant Bragg condition is generalized from the periodic to Fibonacci MQWs. A dispersion equation for
exciton polaritons is derived in the two-wave approximation; the effective allowed and forbidden bands are
found. The reflection spectra from the proposed structures are calculated as a function of the well number and
detuning from the Bragg condition.
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I. INTRODUCTION

The concept of quasicrystal as a nonperiodic structure
with perfect long-ranged bond orientational order was
brought in solid-state physics by Levine and Steinhardt.1 It
was extended to optics in Ref. 2, where a one-dimensional
�1D� quasicrystal model constructed of dielectric layers
forming the Fibonacci sequence was proposed. At just the
same time, the concept of photonic crystals was suggested by
Yablonovitch3 and John.4 Since then, the 1D photonic Fi-
bonacci quasicrystals have been extensively studied.5–8

In this Brief Report, we introduce a nano-object, the Fi-
bonacci quantum well �QW� structure, with interwell spac-
ings arranged in the Fibonacci sequence. This means that the
thickness of barriers separating the wells can take one of the
two values so that the ratio between the long and short inter-
well spacings equals the golden mean �= ��5+1� /2. We fo-
cus on the light propagation in such a medium in the fre-
quency region around the resonance frequency �0 of a two-
dimensional exciton in the quantum well. The barriers are
assumed to be thick enough so that the excitons in different
wells are coupled only via electromagnetic field. Thus, the
object under study is a resonant photonic quasicrystal, an
intermediate structure between completely ordered and dis-
ordered media, namely, periodic multiple quantum wells
�MQWs� with a fixed interwell spacing and MQWs with ran-
dom interwell spacing.

Among periodic QW structures of particular interest are
the resonant Bragg structures with the period satisfying the
Bragg condition,

q��0�d = �j, j = 1,2, . . . , �1�

where q���=�nb /c, q��0� is the light wave vector at the
exciton resonance frequency �0, nb is the background refrac-
tive index of both QW and barrier materials, d is the struc-
ture period, and c is the light velocity. The periodic resonant
Bragg MQWs have been first considered theoretically in Ref.
9 and then investigated in a number of theoretical as well as
experimental works.10–17 It was established that, for small
enough numbers N of QWs �super-radiant regime�, the opti-
cal reflection spectrum is described by a Lorentzian with the
half width N�0+�, where �0 and � are, respectively, the
exciton radiative and nonradiative damping rates in a single

QW.9,14 For a large number of wells �photonic crystal re-
gime�, the reflection coefficient is close to unity within the
forbidden gap for exciton polaritons propagating in infinite
periodic system and rapidly decreases near the gap edges
�0−� /�j and �0+� /�j, where �=�2�0�0 /�.13–16

In Sec. II, we will show that a generalized resonant Bragg
condition analogous to Eq. �1� can be formulated for the
resonant Fibonacci MQW structures, although the latter are
aperiodic. In Sec. III, the significance of the proposed con-
dition is verified by numerical calculations of the reflection
spectra from the structures tuned on and slightly detuned
from this condition, and the dependence of the reflection
spectra on the number of wells is analyzed and compared
with those for the periodic Bragg structures. In Sec. IV, we
apply a two-wave approximation in order to determine the
band gaps in the exciton-polariton spectrum of the Fibonacci
structures and show that the simple analytic theory allows
one to interpret quite well the numerical results.

II. RESONANT BRAGG CONDITION FOR FIBONACCI
MULTIPLE QUANTUM WELL STRUCTURE

The structure under consideration is schematically de-
picted in Fig. 1. It consists of N identical QWs embedded in
a matrix with dielectric constant �b. The interwell distances
take two values represented by long and short segments of
length l and s, respectively. For the Fibonacci chain, the
coordinate zm of the mth QW center is given by18

zm = d̄�m − 1� +
s

�
�1

�
− �m

�
�� , �2�

where the integer m runs from 1 to N, � is the golden ratio, d̄
is the average period of the structure given by the product
s�3−��, and �x	 is the fractional part of x. An alternative way
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FIG. 1. Scheme of the Fibonacci QW structure F6 with N=9
QWs.
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of defining zm is based on the recurrence relation F j+1
= �F j ,F j−1	 for finite Fibonacci chains of the order j+1, j,
and j−1, with initial conditions of F1=S and F2=L, where S
and L are the segments with lengths s and l=�s,
respectively.18 Then, zm are coordinates of boundaries be-
tween the segments in the F j sequence.

The exact reflection coefficient of the light normally inci-
dent on such a structure from the left half-space can be ob-
tained by standard transfer-matrix method.19 In order to form
the base for formulation of the resonant Bragg condition for
the Fibonacci structures, we will analyze the reflection in the
first-order Born approximation neglecting multireflection
processes and summing up the amplitudes of waves reflected
from distinct wells. Then, the amplitude reflection coefficient
rN��� from the N-well Fibonacci structure at the light fre-
quency � is given by

rN��� 
 Nf�q���,N�r1��� , �3�

where f�q ,N� is the structure factor of the system,

f�q,N� =
1

N

m=1

N

e2iqzm,

and r1 is the reflection coefficient from a single QW,

r1��� =
i�0

�0 − � − i�� + �0�
.

For the semi-infinite Fibonacci MQWs, the structure factor
f�q�=limN→� f�q ,N� can be presented in the following ana-
lytical form:18

f�q� = 
h,h�=−�

�

	2q,Ghh�
fhh�, Ghh� =

2�

d̄
�h + h�/�� , �4�

fhh� =
sin Shh�

Shh�
exp�i

� − 2

�
Shh��, Shh� =

��

�2 + 1
��h� − h� .

�5�

Allowed diffraction vectors Ghh� form a dense pseudocon-
tinuous set. The largest values of �fhh�� are reached for the
pairs �h ,h�� coinciding with two successive Fibonacci num-
bers �Fj ,Fj−1�, with Fj defined recursively by F0=0, F1=1,
and Fj+1=Fj +Fj−1. Thus, for �h ,h��= �Fj ,Fj−1�= �1,0�, �1,1�,
�2,1�, �3,2�, and �5,3� corresponding to j=1, . . . ,5, the modu-
lus of fhh� equals 
0.70. 0.88, 0.95, 0.98, and 0.99, respec-
tively. For �h ,h�� not belonging to this particular set, values
of �fhh�� are significantly smaller. As a consequence, the
structure factor �Eq. �4�� reaches maxima when 2q��� equals
GFj,Fj−1

. It follows then that if the exciton resonance fre-
quency satisfies the condition

�0nb

c
d̄ = ��Fj +

Fj−1

�
�, j = 1,2, . . . , �6�

the coefficient �Eq. �3�� at �=�0 and large N amounts to

rN = Nf�q��0�,N�r1��0� 
 −
N�0fhh�

�0 + �
,

which is of the same order of magnitude as the reflection
coefficient calculated in the same Born approximation for a
periodic resonant Bragg structure satisfying Eq. �1�. Hence,
Eq. �6� is indeed a resonant Bragg condition generalized for
the Fibonacci MQWs. In the following, we fix the value of

�0, consider the average period d̄ as a variable parameter,

and use the notation d̄j for d̄ given by Eq. �6� for the integer
j. The corresponding thicknesses sj , lj of the short and long

segments are related with d̄j by

sj = d̄j/�3 − ��, lj = d̄j�/�3 − �� . �7�

The estimation �Eq. �3�� for rN is valid until �rN�
1, i.e.,
if N�0
max���0−�� ,�	. Otherwise, one has to take into
account the multireflection of the light waves from QWs,
which is readily achieved by the standard transfer-matrix nu-
merical calculation. The results are presented and analyzed
in the next section.

III. CALCULATED REFLECTION SPECTRA

Figure 2 presents reflection spectra calculated for four
structures containing N=50 quantum wells. The exciton pa-
rameters used are as follows: ��0=1.533 eV, ��0=50 �eV,
��=100 �eV, and nb=3.55. Curve 1 is calculated for the
resonant Fibonacci QW structure satisfying the exact Bragg

condition �Eq. �6�� with j=2, so that d̄= d̄2, s=s2, and l= l2.
Curves 2 and 3 correspond to the Fibonacci structures with
the barrier thicknesses slightly detuned from s2 and l2: s /s2
= l / l2=1.02 for curve 2 and s /s2= l / l2=0.98 for curve 3.
Curve 4 describes the reflection from the periodic Bragg
structure with the same exciton parameters and the period
d=� /q��0�, satisfying Eq. �1�. From comparison of curves 1
and 4, we conclude that the reflection spectra from the reso-

FIG. 2. �Color online� Reflection spectra calculated for three
Fibonacci structures satisfying the resonant Bragg condition �Eq.
�6�� for j=2 �curve 1� and detuned by 2% from this condition
�curves 2 and 3� in comparison with the reflection spectrum from
the periodic resonant Bragg QW structure �curve 4�. The values of
parameters are indicated in text.
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nant periodic and Fibonacci structures tuned to the Bragg
conditions �Eqs. �1� and �6�� are close to each other outside
the frequency region around �0. Moreover, it follows from
curves 2 and 3 that a slight deviation from the condition �Eq.
�6�� results in a radical decrease of the effective spectral half
width. Thus, the sensitivity to the resonance condition, the
characteristic of periodic Bragg QW systems, holds also for
aperiodic QW systems such as the Fibonacci structures. The
remarkable structured dip in the middle of the spectrum 1 is
the only qualitative difference from the periodic structures;
the origin of this dip is explained in the next section. Now,
we turn to the analysis of reflection spectra as a function of
the QW number N and index j in Eq. �6�.

Evolution of the reflection spectra with the QW number N
is illustrated in Fig. 3�a�. The spectral envelope smoothed to
ignore dip in the middle shows a behavior similar to that of
the conventional Bragg QW structure. Indeed, for small N,
the envelope is a Lorentzian with the half width increasing as
a linear function of N. This is a straightforward manifestation
of super-radiant regime, which, as we can see here, does not
necessarily require periodicity even if the interwell distances
are comparable to the light wavelength. The saturation of the
spectral half width �photonic crystal regime� begins at large
N of the order of ��0 /�0, in a similar way as for the periodic
Bragg structures. The shape of the spectra for large N allows
us to suppose existence of two wide symmetrical stop bands
in the energy spectrum of the structure with an allowed band
between them. Of course, the application of terms “allowed”
and “stop” bands to an aperiodic structure is questionable. In
Sec. IV, we show that, nevertheless, these terms are appli-
cable in a reasonable approximation.

Figure 3�b� presents the reflection spectra of the Fibonacci
QW structures containing a large number of wells, N=200,
and satisfying Eq. �6� with three different values of j. All the
curves indicate an existence of the stop and allowed bands.

However, the bandwidths are j dependent: the stop band �or
gap� indicated by a united pair of vertical lines and the
middle dip are both squeezed with increase of j.

IV. EXCITON-POLARITON ENERGY SPECTRUM

For the light propagating in a system of identical QWs
located at the points zm �m=1,2 , . . . �, the equation for the
electric field can be written as19

�−
d2

dz2 − q2�E�z� =
2q�0

�0 − � − i�

m

	�z − zm�E�zm� , �8�

where q�q���, and we assume that quantum wells are thin
as compared to the light wavelength. We consider a
Fibonacci multi-QW structure with large N and the average

period d̄j satisfying Eq. �6� for a certain value of j. The
assumed large number of wells allows us to replace the struc-
ture factor f�q ,N� by f�q�� f�q ,��. Using the properties of
the coefficients fhh� in Eq. �4� for f�q�, we can retain in the
sum �Eq. �4�� only one term fhh�	2q , Ghh�

with �h ,h��
= �Fj ,Fj−1�. In other words, we take into account only one
diffraction vector Ghh� corresponding to the condition �Eq.
�6�� and neglect all other possible diffraction vectors. In this
approximation, we can present the light wave inside the Fi-
bonacci structure as a superposition of normal waves, each of
them being a sum of two plane waves with the wave vectors
K and K�=K−Ghh� with K
Ghh� /2. The amplitudes of the
chosen spatial harmonics, EK and EK�, satisfy the following
two coupled equations:

�q2 − K2 + ��EK + �f
hh�
* EK� = 0,

�fhh�EK + �q2 − K�2 + ��EK� = 0, �9�

where

� =
2q�0

d̄��0 − � − i��
.

In the following analysis, we ignore the exciton dissipa-
tion, neglecting the nonradiative damping. Thus, the fre-
quency axis is divided into intervals of purely allowed
and forbidden bands with propagating and evanescent
polaritonic solutions. In the allowed bands, the solutions are
characterized by real values of the wave vector K. It is
convenient to reduce the exciton-polariton dispersion
��K� to the “first Brillouin zone” defined in the interval
−Ghh� /2�K�Ghh� /2. The detailed behavior of ��K� inside
this interval lies out of the scope of the present Brief Report.
Note that, in close vicinity to �0, the two-wave approxima-
tion is inadequate and the polariton dispersion should be cal-
culated, taking into account an admixture of a lot of plane
waves. Here, we consider only the exciton-polariton
eigenfrequencies at the edge of the Brillouin zone,
K=−K�=Ghh� /2, which identify stop bands and where the
two-wave approximation is accurate. It follows from Eq. �9�
that four eigenfrequencies at this point are given by

�out
 = �0  �� 1 + �fhh��

2�h + h�/��
,

FIG. 3. �Color online� Reflection spectra from the resonant
Fibonacci structures. �a� Six curves are calculated for the structures
satisfying the condition �Eq. �6�� with j=2 and N
=20,50,80,110,150,200. The number of wells is indicated near
each corresponding curve. �b� Curves 1, 2, and 3 are calculated for
the structures with N=200 and indices j=2,3 ,5 in Eq. �6�. Vertical
lines connected by a horizontal bar indicate the exciton-polariton
high-frequency gap given by Eq. �10�. Other parameters are the
same as in Fig. 2.
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�in
 = �0  �� 1 − �fhh��

2�h + h�/��
. �10�

In accordance with Fig. 3, we attribute the interval
�in

+ ����out
+ to the exciton-polariton upper stop band �la-

beled by index “�”� and the interval between �out
− and �in

− to
the lower stop band �labeled by index “�”�. The subscripts
“in” and “out” denote the stop-band edges, inner and outer,
with respect to �0.

The values of �in
+ and �out

+ are marked by vertical lines in
Fig. 3�b�. One can see an excellent agreement between the
band edges revealed in the calculated spectra and those given
by Eq. �10� which unambiguously confirms the interpretation
of the frequencies �Eq. �10��.

Equation �10� can be reduced to those for the periodic
resonant Bragg structures as soon as �fhh�� is set to unity and
h+h� /� is replaced by the integer j. For �fhh��=1, the inner
eigenfrequencies merge at �0 and a single band gap of width
2� /�j is formed. In the Fibonacci QW structures, �fhh���1
and, as a result, an allowed band opens between �in

− and �in
+ .

We note that a qualitatively similar band structure can be
realized when the periodic MQWs have a compound elemen-
tary cell.15 One can easily show that, also in this case, the
modulus of the structure factor is smaller than unity. More-
over, Eq. �10� can be reduced to Eq. �26� of Ref. 15 if
h+h� /� and �fhh�� are replaced, respectively, by 1 /2 and
�cos qd2�, where d2 is the interwell distance in the compound
unit cell of a periodic structure with two QWs in the super-
cell.

In the Fibonacci QW structure, the decrease of stop-band
widths with the increasing h+h� /� is related to the corre-

sponding increase of the average period d̄ in Eq. �6�, and it is
analogous to the j−1/2 power law of the bandwidth for the
periodic resonant Bragg structures. The middle allowed
bandwidth decreases even faster because, as mentioned
above, the value of �fhh�� tends to unity and, therefore, the
value of �1− �fhh�� rapidly vanishes as the index j in Eq. �6�
changes from 2 to 5.

V. CONCLUSIONS

We have introduced into consideration resonant 1D pho-
tonic quasicrystals based on Fibonacci QW structures. The
analysis of light reflection in the Born approximation has
been used to formulate the resonant Bragg condition for this
system. The results of straightforward transfer-matrix nu-
merical calculation confirm the relevance of the generalized
Bragg condition imposed on the aperiodic system under
study. For a small number N of QWs, the Fibonacci struc-
tures show the super-radiant behavior, while for high values
of N exceeding ��0 /�0, the photonic crystal regime with
distinct stop bands in optical spectra is reached. A qualitative
difference with respect to the periodic resonant Bragg QW
structures lies in the presence of a structured dip in the re-
flection spectrum around the exciton resonance frequency
�0. An approximate two-wave exciton-polariton model al-
lows one to describe the widths of the allowed and forbidden
bands as a function of the structure parameters.
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